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Abstract 

Background: Children are exposed to pesticides from many sources and routes, including 

dietary and incidental ingestion, dermal absorption, and inhalation. Linking health outcomes to 

these exposures using urinary metabolites requires understanding temporal variability within 

subjects to avoid exposure misclassification. 

Objectives: We characterized the within- and between-child variability of urinary 

organophosphorus and pyrethroid metabolites in 23 participants of the Children’s Pesticide 

Exposure Study-Washington over 1 year and examined the ability of one to four spot-urine 

samples to categorize mean exposures. 

Methods: Each child provided urine samples twice daily over 7-16 day sessions in 4 seasons in 

2003 and 2004. Samples were analyzed for five pyrethroid and five organophosphorus (OP) 

metabolites. After adjusting for specific gravity, we used a customized maximum likelihood 

estimation linear mixed effects model that accounted for values below the limit of detection to 

calculate intraclass correlation coefficients (ICC) and conducted surrogate category analyses. 

Results: Within-child variability was 2 to 11 times greater than between-child variability. When 

restricted to samples collected during a single season, ICCs were higher in the fall, winter, and 

spring than in summer for OPs, and higher in summer and winter for pyrethroids, indicating an 

increase in between-person variability relative to within-person variability during these seasons. 

Surrogate category analyses demonstrated that a single spot urine sample did not categorize 

metabolite concentrations well, and 4 or more samples would be needed to categorize children 

into quartiles consistently. 

Conclusions: Urinary biomarkers of these short half-life pesticides exhibited substantial within-

person variability in children observed over four seasons. Researchers investigating pesticides 
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and health outcomes in children may need repeated biomarker measurements to derive accurate 

estimates of exposure and relative risks. 
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Introduction 

Insect control in US agriculture and residences is currently predominated by the widespread use 

of pesticides amounting to over 90 million pounds annually (Grube et al. 2011). This results in 

dietary exposures from the residues left behind from organophosphorus (OP) and pyrethroid 

insecticides used on food and animal feed crops (US EPA 2006a). After the 2001 US EPA 

voluntary phase out of residential OP use, pyrethroids have become the principal pesticide class 

used for indoor pest control (Sudakin 2006), creating opportunities for dermal, inhalation, and 

incidental ingestion exposures (Agency for Toxic Substances and Disease Registry 2003). In 

addition to acute poisonings, epidemiological studies have reported evidence of neurotoxic and 

developmental effects from OP exposures (Bouchard et al. 2010; Harley et al. 2011; Rauh et al. 

2011) and evidence of reproductive toxicity (Meeker et al. 2008; Nassr et al. 2010) and 

endocrine disruption (Han et al. 2008; Meeker et al. 2009) associated with pyrethroid exposures. 

In addition, the US EPA has listed permethrin, a widely used pyrethroid for both agricultural and 

residential insect control, as “likely to be carcinogenic to humans” (US EPA 2006b). 

To investigate these potential risks, urinary pesticide metabolites are often used as biomarkers of 

exposure. Integrating exposures across sources and routes, biomarkers are more likely to give a 

better indication of actual absorption at the individual level than environmental measures. Urine 

biomarkers often are examined because they are easier and less invasive to collect than blood or 

tissue samples. While all biomarkers are influenced by the timing, magnitude, and frequency of 

exposure as well as biological clearance rates, for short half-life chemicals with irregular 

exposure patterns, such as the pyrethroid and OP pesticides, urinary metabolite levels may be 

especially variable not just between people but even within a person. 
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When using biomarkers to represent an individual’s exposure to these short half-life chemicals, 

the within-person variability if not properly accounted for, could lead to exposure measurement 

error or misclassification, and obscure results of epidemiologic investigations and assessments of 

risk. But researchers have relied upon the postulation that the between-person variation in 

pesticide metabolites, due to both different exposure patterns and metabolic processing of these 

pesticides, will predominate and differentiate their participants (Adgate et al. 2001; Egeghy et al. 

2011). Investigations of within-person variability are necessary to understand the diversity of 

exposure and to design effective studies for understanding pesticide effects upon health. 

Information on within-person diversity of exposures to OPs and pyrethroids is mounting. In a 

study of 11 adult males, Meeker et al. (2005) reported that within-person variability in urine 

concentrations of the OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) was 5 times higher than 

between-person variability with multiple measurements taken over 3 consecutive months. 

Furthermore, MacIntosh et al. (1999) reported that the average within-person range of TCPY 

concentrations in 80 adults with an average of 4.3 measurements over one year was 1.5 times 

higher than the median TCPY concentrations for the study population as a whole. 

Estimates of within-person variability based on adult studies, however, may not be valid for 

children because of differences in exposure patterns (e.g., greater hand to mouth contact, time 

close to the ground, food and liquid ingestion, likelihood of non-food ingestion, and air 

inhalation, relative to their body size compared with adults) (Roberts et al. 2009) and differences 

in biological processing (e.g., higher metabolic rates and immature detoxification processes) 

(Morgan et al. 2005; Roberts et al. 2009). Potential health effects of pesticide exposures are of 

particular concern in children because their exposures are greater relative to their body weight, 

and because their organ systems are still developing (Landrigan et al. 1999). Among studies of 
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short duration (up to 7 days)two reported that between-child variability was dominant though 

within-child variability was still substantial (Adgate et al. 2001; Egeghy et al. 2011), while in a 

third study population, within-child variability was higher than between-child variability 

(Bradman et al. 2013). In a longer term study of an agriculturally exposed population followed 

over 21 months, within-child variability accounted for over 90% of the total variability for 

nonspecific OP metabolites (Griffith et al. 2011). To our knowledge, only one study has 

examined the long-term variability of OP exposures in children from the general population 

(Sexton and Ryan 2012). In that population, there was a non-significant predominance of within-

child variability for OP metabolites measured in 4 samples collected over two years. 

Additionally, no study has evaluated the variability of pyrethroid exposures over the long term. 

More information is needed to understand the extent of variability within the general population. 

In the present study, we used numerous repeated measures data from a study of children’s dietary 

pesticide exposures in Washington state (Lu et al. 2008; Lu et al. 2009) to investigate the extent 

to which within-child variability contributed to the overall variability in metabolites of OP and 

pyrethroid pesticides over 4 seasons of sampling. Secondly, to shed light on how many samples 

might be needed in a situation of high within-person variability, we conducted an analysis to 

assess participant assignment into exposure quartiles according to the number of measurements 

used. 

Methods 

Study design 

This study is part of the Children’s Pesticide Exposure Study – Washington (CPES-WA) in 

which 23 children, aged 3-11, living in suburban Seattle participated in an organic diet 
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substitution study from 2003 to 2004 and has been reported elsewhere (Lu et al. 2008; Lu et al. 

2009). Briefly, the children were recruited from two local public elementary schools and one 

Montessori pre-school. The children participated in consecutive day urine sampling periods in 

July/August 2003 (median 15 days, range: 15-16); October/November 2003 (median 12 days, 

range 11-13); January/February 2004 (median 7 days, range 7-8); and April/May 2004 (median 7 

days, range 5-9). In the summer and fall sampling periods, an organic diet substitution phase 

(from Day 4 to Day 8) was incorporated into the study design to assess the dietary pesticide 

exposures. For the present study we included only samples collected during the conventional diet 

portions of the study so that metabolites measured in the urine samples would be representative 

of typical exposures in the children. Participating children in each session numbered 23 in the 

summer, 21 in the fall, 20 in the winter, and 19 in the spring. Written informed consent was 

provided by older children and by the parents of all participants, and oral assent was provided by 

younger children. The study was approved by the University of Washington Human Subjects 

Division. 

Urine collection and laboratory analysis 

Each child provided two urine samples per day: the last void before bedtime and the following 

first morning void. Previous studies have demonstrated that first voids are good predictors of 

overall daily exposure for OPs (Kissel et al. 2005) and, in combination with last voids, a large 

portion of the daily exposure is represented. Additional spot urine samples collected at different 

times of the day during the study were excluded from the present analysis to increase the 

comparability of the samples evaluated. 

After collection, urine samples were stored on ice or refrigerated before processing in the 

laboratory and then stored at -20oC. Samples were analyzed at the National Center for 
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Environmental Health at the CDC in Atlanta, Georgia using HPLC-MS/MS (Olsson et al. 2004). 

Target OP metabolites were malathion dicarboxylic acid (MDA); 3,5,6-trichloro-2-pyridinol 

(TCPY); 2-isopropyl-4-methyl-6-hydroxypyrimidinol (IMPY); and 2-diethylamino-6-methyl-

pyrmidin-4-ol (DEAMPY). Target pyrethroid insecticide metabolites were 3-phenoxybenzoic 

acid (PBA); 4-fluoro-3-phenoxybenzoic acid (4F3PBA); cis-2,2-(dichloro)-2-

dimethylvinylcyclopropane carboxylic acid (cis-DCCA); trans-2,2-(dichloro)-2-

dimethylvinylcyclopropane carboxylic acid (trans-DCCA); and cis-2,2-(dibromo)-2-

dimethylvinyl-cyclopropane carboxylic acid (DBCA). 

Data analysis 

Metabolite concentrations were adjusted for specific gravity to control for dilution using a 

reference specific gravity of 1.019 g/cm3, the 2007-2008 National Health and Nutrition 

Examination Survey (NHANES) mean for children aged 6-11 (CDC 2009; Levine and Fahy 

1945). Since carry-over from a previous day could be expected due to the biological half-life of 

hours to a couple days of these compounds, we confirmed that the conventional diet days 

following the end of the organic diet portions of the original study were not significantly 

different from other conventional diet days before including them in the analyses (t-test p-value 

> 0.05). 

Intraclass correlation coefficients (ICC), defined as the ratio of between-subject variance to total 

variance, were calculated as a measure of the reproducibility of measurements over time within 

individuals. ICCs can range from 0 to 1; ≥ 0.75 indicates excellent reproducibility and ≤ 0.4 

indicates poor reproducibility (Rosner 2006). Between- and within-subject variances were 

calculated with a linear mixed effects model using maximum likelihood estimation (MLE) 

modified to account for values below the limit of detection (LOD) and repeated measurements as 
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implemented in SAS 9.3 (Cary, NC, USA) using PROC NLMIXED, assuming a compound 

symmetry covariance structure (Jin et al. 2011). Age (3-6, 7-11), sex, and season were included 

as covariates in the model: 

Ln(Y) = β0 + β1(age) + β2(sex) + β3(season) + b1 + ε,      [1] 

where Y is the metabolite concentration adjusted for specific gravity, b1 is the between-subject 

random effect, and ε is the within-subject error. 

For metabolites with high percentages of non-detects, the model’s stipulation of a normal 

distribution of the data was difficult to evaluate. Therefore, we restricted the ICC analyses to the 

four metabolites (MDA, TCPY, PBA, and trans-DCCA) that were >LOD in >50% of samples. 

Data were natural log-transformed prior to analysis. We performed a sensitivity analysis on the 

calculation of the ICCs by substituting LOD/2 for values < LOD and using an unmodified 

NLMIXED procedure. A further sensitivity analysis was used to test the model’s sensitivity to 

the assumption of equal covariance. The ICC calculations were repeated using a subset of the 

data with an equal covariance pattern, where only samples with at least two intervening days 

were included in the subset per season. 

To address how much exposure misclassification may develop when participants are categorized 

into exposure groups and how many samples may be necessary to improve the categorization, we 

performed surrogate category analyses for the first and last voids separately (Hauser et al. 2004; 

Willet 1998) with an additional scoring step (Figure 1). We calculated the geometric mean value 

of a metabolite across all samples collected from each participant, resulting in 23 participant 

mean values. Next, we assigned each participant to an exposure quartile (a “surrogate category”) 

based on the metabolite concentration of a single sample selected at random from each 
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participant’s pool of samples. Then we populated each surrogate category with the children’s 

geometric means and calculated the group grand means. Then we evaluated the performance of 

the category assignment. While it would not be possible to directly determine whether 

individuals were correctly assigned according to their “true” and unobserved distribution in the 

population, however, if surrogate categories were correctly assigned, the mean value of each 

category should increase monotonically from the lowest to the highest exposure category. If this 

were the case, we assigned the run a score of 1 and 0 otherwise. Then we repeated the sampling 

and classification steps 1,000 times and used the mean value of the 1,000 scores (expressed as a 

percentage) to indicate an average “success rate.” We performed this process three additional 

times based on the mean value of two, three, and four randomly selected samples for each 

participant. For this analysis, we substituted instrument-read values (when available), or the 

LOD/2, as the concentration for all samples with measurements <LOD.  

Results 

A total of 1,215 urine samples were collected from 23 children (15-63 per child, with a median 

of 59) during the conventional diet stages of the study over four seasons. Metabolite frequency of 

detection, and distributions, adjusted for specific gravity for first and last voids, are presented in 

Table 1. Summary statistics of unadjusted levels for both the conventional and organic diet parts 

of the sampling were previously reported (Lu et al. 2009; Lu et al. 2008). The frequency of 

detection varied among the metabolites. Those detected most frequently across all measurements 

were PBA (> 85%), a common metabolite of several pyrethroids, and TCPY, a specific 

metabolite of chlorpyrifos (> 81%). Several metabolites were detected less than 20% of the time, 

including the pyrethroid metabolites 4F3PBA and DBCA (specific metabolites of cyfluthrin and 

deltamethrin, respectively), and the OP metabolites IMPY and DEAMPY. 
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Within-subject variability was the larger component of variance across all analytes, making up 

more than 65% of the total variability in first voids and last voids (Table 2). The ICCs ranged 

from 0.29-0.35 among the pyrethroid metabolites and 0.08-0.12 for the OP metabolites, 

demonstrating that within-subject variability exceeded between-subject variability by a factor of 

2-11. 

A seasonal affect on the ratio of within- and between-subject variability was observed when the 

same model was fit separately for each season. As compared to the overall results, ICCs 

increased in the fall, winter, and spring, especially for the last voids of TCPY (up to 0.59) 

(Figure 2). However, none reached a level to be considered highly reproducible measure (> 

0.75). For the pyrethroids (Figure 3) ICCs continued to have a large contribution of within-

subject variation, though summer and winter ICCs reached or exceeded 0.5. Where ICCs 

increased, the within-subject variance had decreased while the between-subject variance had 

increased relative to the full model. 

The surrogate category analysis indicated that when a single sample was used to categorize 

exposure into quartiles, the quartile mean values increased monotonically only 14-51% of the 

time (Table 3). Single samples were least likely to produce monotonically increasing quartiles 

for the OP metabolite MDA, and most likely to do so for the pyrethroid metabolite PBA. As the 

number of samples increased, the rate of successful ranking improved, to the point that PBA 

reached a 78% success rate with 4 first morning samples, and an 86% success rate for 4 evening 

samples. 
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Discussion 

Our analyses demonstrated that the majority of the variance in repeated measures of OP and 

pyrethroid metabolites was attributable to within-subject variability in both the first and last 

voids of the day with some variation in the extent of within person variability according to 

season. The low ICCs we observed were indicative of poor reproducibility of a single 

measurement and the need for repeated sampling to characterize individuals’ exposures 

appropriately. 

Seasonal variability in ICCs may offer insight into exposure sources. For the OPs, ICCs were 

larger in fall through spring than in the summer, which may reflect seasonal variation in food 

sources. Diet has been shown in previous studies to be a primary contributor to urinary OP levels 

(Lu et al. 2009; Bradman et al. 2011; Morgan et al. 2011), and imported fruits and vegetables 

have been found to have higher levels of OP residues than domestic produce (US EPA 2006a). 

ICCs for both pyrethroid metabolites were higher in the summer than in the fall or spring. This 

might reflect increased use of pesticides to treat pests by those who use pesticides, which would 

result in more consistent environmental exposures, and thus, reduced within-person variability. 

However, this would not explain high ICCs for trans-DCCA during the winter. 

As a result of having many repeated measures, we were able to investigate how many samples 

would be sufficient to create quartiles of increasing exposure levels of participants for the entire 

period. While this exploration does not indicate whether participants have been assigned to the 

correct quartile, it does indicate whether the quartile averages follow expected stepwise 

increases, which is a good starting point for any epidemiological investigation. Monotonically 

increasing quartiles were produced only 14-32% of the time when OP exposures were 
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categorized based on a single sample measurement, but increased to 55-66% when categorization 

was based on the mean value of four samples. For pyrethroids, monotonically increasing 

quartiles resulted about 50% of the time when based on a single measurement, but increased to 

71-86% when categorization was based on the mean value of four samples. These findings 

suggest that having a small number of samples from each study participant may lead to a high 

probability of exposure misclassification by incorrect quantile assignment and offer little 

assurance for correctly classifying the exposure into a specific category. 

The degree of within-person variability seen in the CPES-WA children was consistent with prior 

studies of children’s exposures to OPs, though those relied primarily on fewer samples per 

person for their calculations. Similar to our study, when samples were spread over time (two 

weeks to a year), ICCs were low (0.02-0.3), indicating a strong contribution of within-person 

variability (Griffith et al. 2011; Harris et al. 2010; Meeker et al. 2005; Sexton and Ryan 2012; 

Whyatt et al. 2009). These low ICCs were observed across different exposure scenarios: 

occupational parental exposure, residence in proximity to agricultural fields, and urban and 

suburban general population level exposure. When samples were taken in closer proximity to 

each other, such as the case of 6 samples taken within 48 hours in the US EPA study of 

preschool children in Ohio and North Carolina, ICCs were higher (0.44-0.65) (Egeghy et al. 

2011). This indicated a greater contribution of between-child variability, but still such a 

substantial contribution of within-child variability that authors expressed concern about the 

utility of using one sample to rank participants’ 48 hour exposure levels (Egeghy et al. 2011). 

However, a recent study of agriculturally exposed children found low ICCs for samples taken 

over a single week (0.27-0.35) (Bradman et al. 2013). Similar to our study, between-subject 

variability increased when ICCs were calculated by season in a study of turf workers sampled up 
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to 18 times for 5 pesticides (Harris et al. 2010). For pyrethroids, only a single study is available 

for comparison though with a much shorter time frame (2 days). The Ohio US EPA study 

authors reported an ICC of 0.69, which, again, they suggested was not high enough to merit 

using single spot samples to represent the 2-day sampling period (Egeghy et al. 2011). 

Our study’s generalizability could be limited by the study population’s characteristics that could 

influence pesticide exposures patterns and their absorption and metabolism. All children in the 

present study originated from the Seattle area, were Caucasian, and were of a mid to upper range 

of socioeconomic status in relation to average US levels. While a direct comparison to NHANES 

is not possible due to its cross-sectional nature, the present study’s mean values over all samples 

collected during the conventional diet days for PBA, trans-DCCA, and TCPY were similar to 

mean values based on single spot urine samples collected from 6-11 year old NHANES 

participants in 1999-2000. However, MDA was rarely detected in samples from the NHANES 

participants and concentrations were much lower [95th percentile values of 2 ng/mL compared to 

16 ng/mL in the present study; lower percentiles were below the limit of detection (2.64 ng/ml)]. 

While participation in the diet intervention may have made the families more conscious of their 

pesticide usage over time, pesticide usage by families was indeed reported, and the means of 

post-organic conventional diet portions were equivalent to or higher than pre-organic portions 

(data not shown). We were also limited by the small number of children in the study. However, 

our finding of low ICCs for the pesticides evaluated is consistent with previous studies, which 

suggests that high within-person variability may be common across populations. Our analysis 

lacked replicate samples (split samples measured again on the same day or a different day) to 

examine the contribution of the method variability to the overall variability. However, even with 

a worse case scenario of a 25% coefficient of variation (CV), our method variability could at 
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most contribute 7% of the within-person variability. Methods commonly used for these 

compounds report CVs for quality controls at under 10% (Olsson et al. 2004). Also an LOQ was 

not provided by the laboratory, so we utilized the LOD as the censoring point in our statistical 

analysis. However when we employed an estimated LOQ of LOD*3 as the censoring point we 

observed ICCs very similar to those obtained using the LOD (at most increased by 0.09, data not 

shown). A further limitation of the method was its reliance upon an assumption of equal 

covariance among the repeated measures within a subject by requiring a compound symmetry 

covariance structure. However, a sensitivity analysis using a subset of the data conforming to 

compound symmetry structures (samples with at least 2 intervening days) produced similar 

ICCs. 

The use of an MLE approach that includes the samples below the level of detection in the 

estimation of the likelihood was a strength of our ICC analysis allowing us to employ the entire 

dataset without relying upon the use of substitute values. This method is not widely used in 

exposure assessment and environmental epidemiology to incorporate values below the LOD 

though it can provide estimators that are consistent, asymptotically unbiased, and efficient (Jin et 

al. 2011). Other methods used to account for values <LOD, including substitution of censored 

values with the LOD/2 or LOD/√2, model-based multiple imputation, or reverse Kaplan-Meier 

estimation, cannot accommodate both repeated measurements and censored values (Jin et al. 

2011.).Through modeling, Jin et al. 2011 demonstrated the general improved performance of a 

customized MLE method over substitution in estimating group means, differences in group 

means, and within-subject variances, especially with large percentages of values below the LOD. 

However, in specific scenarios of low sample numbers, high GSD, and/or high detection 

frequencies more common techniques may be equivalent or preferable. In our data, when the 
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method was repeated with LOD/2 substitution, ICCs were higher for the pyrethroids but were 

approximately the same for the OPs (data not shown). 

The high within-child variability and low categorization success rates demonstrated here have 

implications for epidemiological studies and risk assessment of children’s exposure to pesticides 

and health effects. While researchers need to balance the costs and administrative load of 

measuring an appropriate number of people an adequate number of times, substantial random 

within-person errors can result in attenuated coefficients of regression and correlation, and bias 

risk estimates towards the null for continuous data and in either direction for categorical data 

(Willet 1998). To provide an example of the effect of the within-subject variability upon a true 

risk estimate, we employed the formula of Hofmann et al. (2011) derived from Rosner et al. 

(1992) for a case-control study with matched sets: RRobs = exp[ICC x ln(RRtrue)]. For a true odds 

ratio of 2, our ICCs suggest that estimated odds ratios in studies might be as low as 1.06 (using 

the lowest ICC of 0.08 for MDA) to 1.27 (using the highest ICC of 0.35 for trans-DCCA), 

suggesting the possibility of substantial bias that could result in false negative findings. Large 

studies are not immune to the effects of variability in exposure measurement. Attenuation bias 

reflects high within-subject variance when measuring risk factors (relative to between-subject 

variance) and is not reduced by increased sample size, as demonstrated in the Framingham Heart 

Study (Rosner et al. 1992). Future researchers may want to consider methods for estimate 

adjustment or sensitivity/bias analysis to address measurement error and within-person 

variability in their studies (Guo et al. 2012, Spiegelman 2010, Rosner et al. 1992). Our ICCs may 

be useful reference values in studies of children’s pesticide biomarkers where internal validation 

data are not available for conducting sensitivity analyses. 
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In addition to better characterizing average exposures, collecting repeated samples of a short 

half-life chemical such as these pesticides enables a better understanding of exposure patterns 

and identification of extreme values. Without longitudinal data, the ability to capture trends over 

time or over season will be lost. Repeated measures also provide more opportunities to identify 

risk factors for heightened exposures, and therefore provide insight on how to reduce exposures. 

In this population, intermittent urinary metabolite peaks were observed and then traced back to 

parental uses of pesticides in or around the home (Lu et al. 2009). 

In conclusion, the short half-life pyrethroid and OP pesticides exhibited substantial within-

subject variability as urinary biomarkers in children when observed over four seasons of 

measurements. Researchers investigating exposure and risk patterns in children and links to 

health outcomes may need repeated measurements to derive accurate findings. 
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Table 1. Descriptive statistics of first and last void concentrations of urinary metabolites adjusted for specific gravity from 23 children. 

Metabolites Void 
Total no. of 

urine samples 
LOD 

(µg/L) 
Detection 

frequency (%) 
25th 

Percentile 
50th 

Percentile 
75th 

Percentile 
95th 

Percentile 
100th 

Percentile 
Pyrethroid          

PBA First 616 0.1 91 0.5 1.1 1.5 4.5 61.2 
 Last 599 0.1 85 0.3 1.0 1.4 4.1 26.5 
4F3PBA First 599 0.2 16 <LOD <LOD <LOD 1.1 2.3 
 Last 599 0.2 13 <LOD <LOD <LOD 1.0 61.2 
cis-DCCA First 599 0.2 37 <LOD <LOD 0.7 1.7 46.0 
 Last 599 0.2 32 <LOD <LOD 0.4 1.3 4.6 
trans-DCCA First 599 0.4 55 <LOD 0.9 1.4 4.4 97.1 
 Last 599 0.4 49 <LOD 0.6 1.3 3.9 27.7 
DBCA First 599 0.1 3 <LOD <LOD <LOD <LOD 0.3 

 Last 599 0.1 4 <LOD <LOD <LOD <LOD 0.8 
OP          

MDA First 616 0.3 57 <LOD 0.8 3.0 13.8 433.8 
 Last 599 0.3 52 <LOD 0.6 3.2 16.9 283.8 
TCPY First 616 0.2 87 1.0 3.8 6.8 13.0 43.8 
 Last 599 0.2 81 0.8 3.2 6.0 12.2 69.5 
IMPY First 600 0.7 3 <LOD <LOD <LOD <LOD 16.2 
 Last 586 0.7 4 <LOD <LOD <LOD <LOD 31.4 
DEAMPY First 597 0.2 10 <LOD <LOD <LOD 0.6 26.7 
 Last 593 0.2 18 <LOD <LOD <LOD 1.5 50.2 

Abbreviations: PBA - 3-phenoxybenzoic acid, 4F3PBA- 4-fluor-3-phenoxybenzoic acid, cis-DCCA - cis-2,2-(dichloro)-2-

dimethylvinylcyclopropane carboxylic acid, trans-DCCA- trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid, DBCA- cis-2,2-

(dibromo)-2-dimethylvinyl-cyclopropane carboxylic acid, OP – organophosphorus, MDA- malathion dicarboxylic acid, 3,5,6-trichloro-2-

pyridinol, IMPY- 2-isopropyl-4-methyl-6-hydroxypyrimidinol), DEAMPY- 2-diethylamino-6-methyl-pyrmidin-4-ol. 
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Table 2. Components of variancea and intraclass correlation coefficients for first and last voids. 

 First void Last void 

Metabolites % > LOD 
Variance 
Between 

Variance 
Within ICC % > LOD Variance Between 

Variance 
Within ICC 

PBA 91 0.48 0.97 0.33 85 0.47 1.16 0.29 
trans-DCCA 55 0.45 0.88 0.34 49 0.49 0.91 0.35 
MDA 57 0.36 4.04 0.08 52 0.56 4.88 0.10 
TCPY 87 0.21 1.75 0.11 81 0.29 2.09 0.12 
Abbreviations: PBA, 3-phenoxybenzoic acid; trans-DCCA, trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid; OP, 

organophosphorus; MDA, malathion dicarboxylic acid; TCPY, 3,5,6-trichloro-2-pyridinol. 
aAge, sex, and season were included as covariates. Metabolite concentrations were ln-transformed. 
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Table 3. Surrogate category analysis based on 1- 4 random samples in 1000 resamples. Results indicate the success rate of all resamples that 

produced monotonically increasing quartiles.a 

Metabolites Void 
1 sample 

Success rate (%) 
2 samplea 

Success rate (%) 
3 samplea 

Success rate (%) 
4 samplea 

Success rate (%) 
PBA First 47 50 73 78 

 
Last 51 61 79 86 

trans-DCCA First 48 47 67 71 

 
Last 48 50 66 78 

MDA First 15 31 52 59 

 
Last 14 32 55 66 

TCPY First 19 34 44 55 

 
Last 32 41 59 66 

Abbreviations: PBA, 3-phenoxybenzoic acid; trans-DCCA, trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid; MDA, malathion 

dicarboxylic acid; TCPY, 3,5,6-trichloro-2-pyridinol. 
aIn runs with 2 or more random samples, children were assigned to quartiles according to the mean of the logged values of the selected samples. 
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Figure Legends 

Figure 1. Process of surrogate category analysis with scoring. 

Figure 2. OP metabolite intraclass correlation coefficients of first and last voids by season. 

Figure 3. Pyrethroid metabolite intraclass correlation coefficients of first and last voids by 

season. 
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Figure 2. OP metabolite intraclass correlation coefficients of first and last voids by season. 
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Figure 3. Pyrethroid metabolite intraclass correlation coefficients of first and last voids by season. 
74x43mm (300 x 300 DPI) 
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